Experiment with Water in a Tumbler - NAEST 2020

SARMISTHA SAHU
Maharani Lakshmi Ammanni College (Autonomous)

Received 8.6.22, Accepted 7.7.22
Keywords: lens, focal length, thin lens, thick lens.

Problem Statement:

In this experiment you will explore the relation between u and v for a thick convex lens. It will be water in a cylindrical vessel/tumbler or pot. Though the lens so formed is not spherical, but if the rays are collected in a horizontal plane, one can still use $u-v$ relations and see the effect of the thickness of the lens.
(Experiment in Prelims of National Anveshika Experimental Skill Test 2020)

1. Discussion in the Prelims Committee (8 Members) chaired by Prof H C Verma

The Online Examination and Experimentation at home, leisurely in 60 hours, gave the experimenter (student) time to think, plan and do. The committee members identified the issue and were clear about what needs to be done. Of course, we had different views of the same problem and worked in our own style. We came up with a variety of results and many different strategies to achieve the goal.
During our discussions, we put down our differences and listened carefully to understand each other. We did a lot of brainstorming and gave lots of room for everyone's creativity. We separated the many options and evaluated the options with varying weightage. Weighed all the pluses and minuses and came out with an optimum evaluation scheme with lots of room for the student's creativity and ingenuity. We had to 'bundle' a lot of options to come to the satisfactory solution.

Documentations was done faithfully to jot down all the details and implications. And the best part, there was plenty of room to monitor, follow-through and change wherever required!

Sarmistha Sahu

2.Question to be addressed?

Our inference at the end of our experimentation was divided, was the focal length (determined for our thick water lens) a constant or varying with the distance of the object?

Guess what, working out the theory gave us the answer.

3.Theory:

a. Relation between $\mathbf{u}, \mathbf{v}, \mathbf{f}$

Sign Convention is the Cartesian Coordinate System. Origin is H for the thick lens. For refraction at the first and second surfaces, V_{1} and V_{2} are the origins, respectively.

Fig 1. Ray diagram of a circular lens (blue). OA and BI are the object and image respectively. Fo and Fi are the foci. u and v are the object and image distances. All measurements are from DE.
In Fig.1, object OA produces an image IB. The object and image distances for the thick lens is measured from the principal plane DE.DE cuts the principal axis AB at H. For a circular lens, the two principal axes $D_{1} H_{1}$ and $D_{2} H_{2}$ are coincident and are along diameter of the circle (DH) of radius R (due to symmetry). That is, H_{1} and H_{2} are at the centre of the circle $H . V_{1}$ and V_{2} are the vertices of the thick lens. Radius of curvature of the left surface is $R_{1}=R$ and the right surface $R_{2}=-R$
$\mathrm{OD}=$ object distance $=-u$
$\mathrm{EI}=$ image distance $=v$
$\mathrm{HF}_{\mathrm{i}}=$ second focal length of the lens $=\mathrm{fi}$
Ray diagram. A ray ($\mathrm{OD} \mathrm{)} \mathrm{parallel} \mathrm{to} \mathrm{the} \mathrm{principal} \mathrm{axis} \mathrm{emerges} \mathrm{through} \mathrm{the}$ second Focus F_{i} of the lens as DF_{i}. Another ray $\left(\mathrm{OF}_{\mathrm{o}}\right)$ from O passing through the
first focus F_{o} emerges as EI, parallel to the principal axis. The two emergent rays met at the point I to give the conjugate image position I of the object O .

Let the object height be y_{0} and the image height be y_{i}. Consider the similar triangles $\mathrm{OF}_{0} \mathrm{~A}$ and $\mathrm{EF}_{0} \mathrm{H}$

$$
\begin{equation*}
\frac{y_{o}}{y_{i}}=\frac{A F o}{H F o}=\frac{u-f_{o}}{f_{o}} \ldots \ldots \tag{1A}
\end{equation*}
$$

In the similar triangles $\mathrm{DHF}_{\mathrm{i}}$ and $\mathrm{F}_{\mathrm{i}} \mathrm{IB}$

$$
\begin{equation*}
\frac{y_{o}}{y_{i}}=\frac{H F_{i}}{F_{i} B}=\frac{f_{i}}{v-f_{i}} \ldots \ldots \tag{2~A}
\end{equation*}
$$

If both the image space and the object space have the same RI (air in our case), the focal lengths are equal.

Therefore, $f_{o}=f_{i}=f$
From Equations (1A) and (2A)

$$
\begin{equation*}
u v-v f-u f+f^{2}=f^{2} \tag{3A}
\end{equation*}
$$

Dividing with uvf throughout,

$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

Considering the cartesian coordinate Sign convention, u is negative while v and f are positive.

$$
\begin{equation*}
-\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \ldots \ldots \tag{4~A}
\end{equation*}
$$

This is the lens equation of the thick lens where f is the effective focal length, measured from the principal plane.
b. To find the relation between the focal length and the radii of curvatures of a system of curved surfaces separated by a distance d from the vertices V_{1} and V_{2}---
Consider two curved surfaces $D_{1} V_{1} D_{2}$ and $D_{1} V_{2} D_{2}$ where D1D2 is the diameter of the circular lens system. The two curved surfaces separated by 2 R and $\mathrm{RI}=n$, is equivalent to the thick lens above,

Sarmistha Sahu

Fig.2. Relation of radii of curvatures and focal length fi of a thick lens.
provided a parallel beam of light from the left passes through the second focal length F_{i} of the above lens (or vice versa).

For refraction at the first surface, all measurements are done from V_{1}. Sign convention is the Cartesian Coordinate system.
$O D$ and $A B$ are rays parallel to the principal axis and can be considered to come from infinity and is incident on the first surface of radius $R_{1}(=R)$. OG and $A V_{1}$ converge at I_{1} (then I_{1} is the focal point of the first refracting surface). Therefore,

$$
\begin{equation*}
-\frac{1}{\infty}+\frac{n}{V_{1} I_{1}}=\frac{n-1}{R_{1}} \tag{1}
\end{equation*}
$$

GC refracts at the second surface $\left(D_{1} V_{2} D_{2}\right)$ and finally meets at Fi. The radius of curvature of the second surface is $R_{2}=-R$. The distance between the two refracting surfaces is $V_{1} V_{2}=d=2 R$.

Therefore, the virtual object at I_{1} forms a real image at F_{i} and the relation due to refraction
$-\frac{n}{V_{2} I_{1}}+\frac{1}{V_{2} F_{i}}=\frac{1-n}{R_{2}}$.
$V_{2} I_{1}=V_{1} I_{1}-V_{1} V_{2}$
$V_{1} V_{2}=d$
$\frac{V_{2} I_{1}}{V_{1} I_{1}}=1-\frac{d}{V_{1} I_{1}} \ldots \ldots$

From similar triangles $\mathrm{DH}_{2} \mathrm{Fi}$ and $\mathrm{CV}_{2} \mathrm{Fi}$
$\frac{y o}{y i}=\frac{H_{2} F i}{V_{2} F i}=\frac{f i}{V_{2} F i}$.
From similar triangles $\mathrm{GV}_{1} \mathrm{I}_{1}$ and $\mathrm{CV}_{2} \mathrm{I}_{1}$
$\frac{y o}{y i}=\frac{V_{1} I_{1}}{V_{2} I_{1}}$
From (4) and (5)
$\frac{1}{f i}=\frac{V_{2} I_{1}}{V_{1} I_{1}} \cdot \frac{1}{V_{2} F_{i}}$
Using Equations (1), (2), (3), (6)
$\frac{1}{f i}=\frac{V_{2} I_{1}}{V_{1} I_{1}} \cdot \frac{1}{V_{2} F_{i}}$
$\frac{1}{f i}=\frac{V_{2} I_{1}}{V_{1} I_{1}} \cdot\left(\frac{1-n}{R_{2}}+\frac{n}{V_{2} I_{1}}\right)$
$\frac{1}{f i}=\frac{V_{2} I_{1}}{V_{1} I_{1}} \frac{1-n}{R_{2}}+\frac{n}{V_{1} I_{1}}$
$\frac{1}{f i}=\left(1-\frac{d}{V_{1} I_{1}}\right) \frac{1-n}{R_{2}}+\frac{n}{V_{1} I_{1}}$
$\frac{1}{f i}=\frac{1-n}{R_{2}}-\frac{d}{V_{1} I_{1}} \frac{1-n}{R_{2}}+\frac{n}{V_{1} I_{1}}$
$\frac{1}{f i}=\frac{1-n}{R_{2}}-\frac{1}{V_{1} I_{1}}\left(\frac{1-n}{R_{2}} d-n\right)$
$\frac{1}{f i}=\frac{1-n}{R_{2}}-\frac{n-1}{n R_{1}}\left(\frac{1-n}{R_{2}} d-n\right)$
$\frac{1}{f i}=\frac{1-n}{R_{2}}+\frac{(n-1)^{2} d}{n R_{1} R_{2}}+\frac{n-1}{R_{1}}$
$\frac{1}{f i}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right] \ldots \ldots$

Sarmistha Sahu

The focal length is dependent on the refractive index of the media and the radius of the curved surfaces. Thus, for a given system of fixed n and R_{1} and R_{2}, the focal length is a constant.
Since OD the incident ray (parallel to the principal axis) meets the emergent ray DFi at $\mathrm{D}, \mathrm{DH}_{2}$ must be the principal plane of the thick lens so formed and Fi is the second focus of the thick lens.

The focal length of the thick lens is $\mathrm{HF}_{\mathrm{i}}=f_{i}=f$ as in Fig 1.
Therefore, substituting Equ. (7) in (4A) gives
$-\frac{1}{u}+\frac{1}{v}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right] \ldots .$. (8)
This is the lens equation of the thick lens.
For a cylindrical lens, $\mathrm{R}_{1}=\mathrm{R}$, and $\mathrm{R}_{2}=-\mathrm{R}$, hence
$\frac{1}{f_{i}}=\frac{n-1}{n} \frac{2}{R}$
Of course, the distance between the vertex and the principal planes are $\mathrm{V}_{1} \mathrm{H}_{1}=\mathrm{h}_{1}$ and is positive and $\mathrm{H}_{2} \mathrm{~V}_{2}=\mathrm{h}_{2}$ is negative as shown in the figure and is given by (not shown explicitly here),

$$
h_{1}=-\frac{f_{i}(n-1) d}{n R_{2}} \text { and } h_{2}=-\frac{f_{i}(n-1) d}{n R_{1}}
$$

Eg. For the cylindrical lens
$\mathrm{R}_{1}=\mathrm{R}, \mathrm{R}_{2}=-\mathrm{R}, \mathrm{d}=2 \mathrm{R}$
$h_{1}=R$
$h_{2}=-R$
from V_{1} and V_{2}, the poles of the curved surfaces. And both the principal planes are coincident and are along the diameter, perpendicular to the principle axis.
Hence our measurements of object distance and image distance from the centre, for the experiment, is perfect. What we are measuring as $1 /|\mathrm{u}|$ and $1 /|\mathrm{v}|$, and the sum is giving us the $\mathbf{1 / f}$ of the thick lens and should be a constant.

4. Inference

A sample result is quoted here

- With glycerine (RI 1.473) filled in the tumbler,
a. Experimental value of $\frac{1}{|u|}+\frac{1}{|v|}=0.210 \mathrm{~cm}^{-1}$
b. Lens makers formula for a thin lens is $\frac{1}{f}=(n-1) \frac{2}{R}=0.328 \mathrm{~cm}^{-1}$
c. Lens makers formula for thin lens is $\frac{1}{f}=\frac{(n-1)}{n} \frac{2}{R}=0.219 \mathrm{~cm}^{-1}$
d. Experimental focal length $=(4.75 \pm 0.07) \mathrm{cm}$
e. Focal length from lens makers formula for thin lens is $(3.05 \pm 0.05) \mathrm{cm}$
f. Focal length from lens makers formula for thick lens is $(4.57 \pm 0.07) \mathrm{cm}$
- With water $(\mathrm{RI}=1.33)$ filled in the tumbler
g. Experimental focal length $=6.45 \mathrm{~cm} \pm 2 \%$
h. Focal length from lens makers formula for thin lens is $4.63 \mathrm{~cm} \pm .6 \%$
i. Focal length from lens makers formula for thick lens is $6.13 \mathrm{~cm} \pm 1.6 \%$
- RI of glycerine measured after replacing water with glycerine in the same tumbler
j. RI of glycerine is 1.50 ± 0.05
k. Standard value of glycerine is 1.473

5. Conclusion

The focal length of the water-filled-tumbler-lens matched the les makers formula of a thick lens and was a constant.

The revelation was quiet thrilling. The joy of doing experiments with daily use gadgets was satisfying.

References:

[1] Eugene Hecht Optics 5th Edition.
[2] Morgan, J. Introduction to Geometrical and Physical Optics, New York: McGraw-Hill, p. 57, 1953.

